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THIS STATISTICAL POINT ESTIMATION

FOR PARAMETERS OF SOME QUEUEING SYSTEMS

This paper deals with the problem of statistical point estimation for some
queueing systems in equilibrium state with the first to come is the first to be
served discipline.

The maximum likelihood method of estimation is used in this paper to es-
timate the rates of interarrival and service times and the utilization factor of each
of those systems.

Finally there is a table including all the results obtained.
FORMULATION OF THE PROBLEM

Most probabilists generally divide the statistical problems into two types,
“parameter estimation” and “distribution selection”. In the case of the parameter
estimation problems a particular type of probabilistic model is to prespecify an
estimator for its parameter, while in the case of the distribution selection pro -
lems appropriate data are to be examined as a basis for determining a choice of
model. This second type of problems is the more important of the two, but us -
ally also the more difficult. It is for that reason the overwhelming portion of lit-
erature has been concerned with parameter estimation .

The point estimation for some birth and death queueing models was co -
sidered by wolf [7]. Later Clarke [3] dealt with the maximum likelihood estima-
tion for some unknown parameters for the simple queue M/M/1. In the same
year Benés considered this problem for the telephone exchange model.

This paper deals with the maximum likelihood point estimation for the
rate of interarrival A, the rate of service time u, and the utilization factor P of
the m-server loss queue: M/M/m/m, the self regulating queue with finite cus-
tomer population: M/M/1/M, the finite customer population queue with infinite
number of servers: M/M/oo/M, the Erlangian queues: E/M/I and M/E/1, and at
last the bulk arrival queue.
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1. POINT ESTIMATION FOR THE M-SERVER LOSS QUEUE:
M/M/m/m

The interarrival times and service times of this queueing system obey the
exponential distribution or, equivalently, the arrival rate and service rate follow
a Poisson distribution. Let Ay and Uy be the arrival and service rates respe -
tively, then there are k customers in the system. There are m servers available in
the system. Each newly arriving customer is given his private server; however if
a customer arrives when all servers are occupied that customer is lost. Hence,
A=A, where A is the mean interarrival time, and U, =K u, if K <m, where U is
the mean service time and Uy = 0 otherwise. Thus, the steady state probabilities

A . A _ )
Py =t—Lim o P, (, where Py (t) =P, (k customers in the system at time t), are

given as in [5] by

ALk 1
&k =p

7 Po when k<m

P, = 1.1
O otherwise,
The expected number E (n) of customers in the system in the long rum is
given by

-1
() = Py() [':';:O & 5] 1.2

This particular system is of great interest to those in telephony. Specially,
P.. describes the fraction of time that all m servers are busy. The name given to
this probability expression is Erlang’s loss formula and it is given by

(5)m/m!
u

Pm =
{ Sk l.]
k=0 u ki

To find the likelihood function it is necessary to find the three basic com-
ponents, namely:

(i) The initial number of units with contribution Pr (y) Py .

P38 (B aue Yt
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(ii) The interarrivals of length t; (each of which is exponential for n ar-
rival units with contribution (lﬁl Ae "ﬁ).

(iii) The service time of duration t; for k units with contribution
n -ut.
(ITue 1).
1=1
Hence, the likelihood function may be written as

—ut

n —At k
L@O)=TI ! . [Tu . p): ©=(uw
1=1 1=] r
~At
=P e le W M7y
g e U k;

Where T= E t .t= %ti.and K, is a constant independent of A and u for
1=1 1=1
all m.

Thus
In[L®)]=InPo-AT-tu+Mmty)InA+ (k- 7y)Inutink,. [1.4]

By partial differentiation with respect to A and u respectively and equating
the results by zeros, it follows that

A Ofnp
L i I L A Y
an a A
=g
and
uafnL A___u[aénpo_z__’_kjy]:()
OA |6-6 Ou u

A

Where 4 and 1 are the maximum likelihood estimators for the parame-
ters A and u respectively.

The following theorem is of special importance to this paper.

Yo ' PR3 jueaSl (8) ste
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o<u,=

Theorem 1.1:

For the birth-death process with rates, as in wolf (7), namely o <A, = Ag,,
ur, for n positive integer and both g, and r, bounded functions of n. as in
feller [4], we have

(%npo aénpo
=u

E(n) = —A - .
(@) EY) ou

Where Py A delay probability and E (n) A expected value of n.

Proof: As in Leonard [6], it is clear that

n-1
Pn =PO 1];[0 W

forn>1

Case (1) : putting A, = Xng,, it follows that

g.
P =[1+ Y A" i -l
0 =1 Z II}) . —]

i+1

Taking the logarithm of both sides of this equation and differentiating the
resulting equation partially with respect to A yield

dfnp © g
~—2-py (Em ] ==
[4 i=0 Ui+]
But,
e ¢] n-1 x'i
E(n)-ann—P [ZEn T —]
n=l 1=0 u

i+l
Therefore, it follows that

a!.’npo

E(n) = -A
oA

P g8 (§) sus
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Case (11) : putting U; = Uy, it follows that

© ] n-1 xi -1
PO=[1+ ¥ — T —ij
n=l,n 1=0 g,

Taking the logarithm on both sides of this equation, it follows that

n-1 A,

fnP. = —én[l+ °§ 1 n -t
0 n=l ,n i=0 Ti+1

Therefore,

ot -1 A,

W _p (3 iy
n~-l,n+1 i=0 “i+l
Hence, |
6€np0 © n-l Xi
=P .

! 0 [n§1n igo ’i+1]

Thus, it is evident that
a1
E(n)=u "Po
Ju

Hence, the theorem is proved.

Using this theorem yields

A=%[n+y+l::(n)] )
and > 1.5

~ 1 ~

i=-[k-y+E@)], )

-

Where E (n) is the maximum likelihood estimator of E (n).

Obtaining the value of E (n) from each of the equations in'1.5 and divid-
ing the resulting values yields

\A4 FRLLLIPOPVLy) (8) aue
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ru-Ge-y) | [1.6]
-TA+(m+7)

Recalling that p, the maximum likelihood estimator of the traffic intensity

p, is given by p- A

—and using 1.5. it follows that
mu

z(+7-E(m) 17
mT(k —y+E (n) '

b=
substituting E (n) for its value into 1.7 yields

m" m+1 . . .
(mp) Po]-mpT[k—y+mp-

A\m+l
2 (“ﬁi 51=0 1.8

t[n+y-mp+ Po

Where p,is the maximum likelihood estimator of Pgy

The equation 1.8 is an equation in pof degree (m+1). Consider the special

case M/M/1/1. On replacing p,and m by Llr— and 1 into 1.8, respectively, it
P

follows that

z [(#y-P) A+ +52]-BT [(ey+) 4+P+5T=0
in other words

[T (ey+ )P~ [ (mry=1~TlpJp—c (=0 [19]
Replacing (K-y-1) and (n+y-1) by (k-y) and (n + y) respectively in 1.9

yields
B-VI(Th-y p-t(n +p] =0 [1.10]
Therefore,
p=10 Y [1.11]
Tk&-y

is a solution for the modified equation 1.10 of degree two in p.It is clear

that p has an F [2 (k-7), 2 (n +y)] distribution with known variance. Using 1.6
and 1.9, it follows that

pAAA i3Sl (Haue YA
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and | > [1.12]

A= p(n+k) n+y
Tp+t T /

2. POINT ESTIMATION FOR THE SELF REGULATING FINITE
CUSTOMER POPULATION SINGLE SERVER QUEUE: M/M/1/'M

The interarrival times and service times of this queueing system obey the
exponential distribution. There is only a single queue and a single server. A
customer is either in the system, or outside the system and in some sense “ar-
riving”. Let A, and uy be the arrival and service rates, when there are k customers
in the system. Customers act independently of each other. When there are k
customers in the system, then there are (M-K) customers in the arriving state.
Thus, the steady state probabilities

Pk =, Lim o pk(t),where Py (DA py (k customers in the system at the time

t), are given as in (5) by:

Bk (MM'K)‘ P For0<K<M,
P= 2.1
L 0 Otherwise
Where
R-1 % &) vl

It is evident that E(n), the expected number of customers in the system, is
given by

E(n)= 3 nP,
—n=0 n

Therefore,

Y4 AYAY _ugast (8) sae
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M!

E(n)=P, z " ey G
=P, z (n-M+M) s
| M A M M A
=o Z M ot-m @ P % o &

_p MM+ _A
Po(MH 4+ M-2
Thus, E(n)=M-P+P M+l p,

Where P, the utilization factor, is given by

P
As in the previous section, the likelihood function is given by:
L@O(=P, . AT W mtu o TA g @ =(4,u)
Where K is a constant independent of both A and u. Therefore, it follows that

oénL
o

A N 3
Y .= -
0=6 Em)+Th - (n+y)

and 7 2.3

ofnL ~ n
UT 0=6 =EMm)—-tu+(m-vy).

/

Equating each of the equations in 2.3 by zero yields
=2 n+y-E@)] )

and -y 24

[a—

i =—[m-y+E@)] )

Obtaining the value of E(n) from each of the equations in 24

P19 519381 (8) 2ue | A.
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Then dividing the results yield

Tu-m+y_, 2.5
n—Th+y

Recalling that p= % and using 2.4 , it follows that

_ iln+y-E@) 2.6
T[m—y+E(m)]

o>

From 2.2 it is evident that

E(n) =M-p+pM*p,

Where E(n), j,and poare the maximum likelihood estimators of E(n), P,
and P, respectively.

Replacing E(n) by its value in 2.6 yields.

A A
[Tm-y+M=-p+pM" p)lp-[x(m+y-M+pM +1P0)] =0 2.7

Equation 2.7 is an equation in pof degree (M+1). Consider the special
case M/M/1/1. Letting M=1 in 2.7 and recalling that po=u+x in M/M/1/1

queueing system , 2.7 reduces to the following equation:
[T ~y)] p? +[T(m-y+1)-t@+1] p~t@+y-1)=0 2.8

Replacing (n +y-1)and (m -y + 1) by (n + ) and (m - y) respectively in
2.8 yields.

@-DBTm-y)-t@+7)]=0 | 29
On solving the modified equation 2.9 , it follows that

_t(+7) ‘
=T - 2.10

1s one of its solutions. P has anF [2 (m-y), 2 (» + ¥)] distribution with
known variance using 2.5 and 2.10 , it follows that

A\ #1944 49381 (8) sue
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and 2.11

{_pDhtm _nty
Tp+t T

3- POINT ESTIMATION FOR THE FINITE CUSTOMER POPULATION
AND INFINITE NUMBER OF SERVERS QUEUE: M /M /o /M

The interarrival times and service times of this queueing system obey the
exponential distribution. The population is considered to be finite. There is a
single queue but an infinite number servers. Each newly arriving customer is

given his private server. Let A, and u be the arrival rate and service rate, when
there are k customers in the system.

Thus, the steady state probabilities p, A, Lim __p,(t) . Where p, ) Ap, (k
customers in the system at time t), are given as in [5] by:

Ak !
(" P o<k<M
Pk = 3.1
O ) otherwise,
where
(12 MM
po =1+ u)

Denoting the expectation, that there are n customers in the system in the
long run, by N, it follows that

1 M Ay |M-1

&)m kz=:0(u) M|:K_l]
u

() & (%),[M]

a+ 7E)M =0 !
u

Ne Yk
= pk =
k=0 (+

AN pgasl () aue AY
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My & AL [M] ) A
=—= | -5
a+HM S v a+5Hm
u u
Therefore,
M+l
N=i___('““31 . 3.2
u 1+ )M
u
Hence, it follows that
N=ytMF1 33

© e
where Xand yare maximum likelihood estimators for the expectation N and

the traffic intensity y respectively.
As before, the likelihood function is given by

LO)=umy . A™ e e Ky O=(4.u)
Where k3 is a constant independent of A and u. therefore, it follows that

ofnL - A
—X—ak-— oed —N+T.X—(n+y)
and 34
0¢nL S A
U—E(;— oed —N—T.U+(m—’Y)
Letting oy _g-2g g0 3.4 yields
o\ ou
i= n+}'—l:1
T
and 35
L meyeAl

T
Thus, it is evident that

m-mty 3.6
-Th+n+y

From 3.5 , it follows that

_im+y-R) 3.7
T@m-y+N)

Using 3.3 and 3.7 , itisclear that

AY ) PR gl (P aae
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M+l
Tn+y+y+ Y

a+pM

.M+1
Tm-y+y- Y
L a+nM

M+l ]

- fn+y+NA+HPM +y
Tim-y+HA+HM -

Therefore,

N
[Tm-y+HA+PHM - -[1 (n+y-p)A+P1=0 3.8

Equation 3.8 is an equation in y of degree (M+2)

Considering the special case M/M/ /1. 3.8 reduces to
[T@-y+0]§* +[Tm-y)-r@+y-D]F-t(+y)=0 1.9

Replacing (m -y) and (n+y) by (m -y + 1) (n + v — 1). 3.9 reduces to
F+DETm-y+)-t(+y-1]=0 3.10

Solving this modified equation, it follows that

_ Tin+y-1]

T Tlm—y+1]

1S a solution of 3.10

3.11

It is evident that y has an F[2(m-y +1), 2(n + 7y -1)] distribution with
known variance. Using 3.6 and 3.11, it follows that

n+m _m-y+l
Tp+t T

U=

and

>
U}

~2>
=>
i

-

> 3.12

p1A2a 3976
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4.POINT ESTIMATION FOR THE ERLANGIAN QUEUE : E/M/1

The interarrival time obeys the Erlangian distribution whose probability
density function, a (t), is given by

_rA(rAn) e
-1

a(t) fort>0.

But, the service time obeys the exponential distribution whose probability
density function b(x) is given by

Bx)=ue™ for x > 0.
The arriving facility is an r stages Erlangian facility.

An arriving customer is immediately inserted from the left side of the ar-
riving facility and passes through exponential stages each with parameter A. On
exiting from the right side of the arriving facility, an arrival to the given system
E./M/1 is said to occur. No other customer can be inserted from the left side into
the arriving facility before the previous one exits from the right side of this fa-
cility. Once having arrived, the customer joining the queue, waits for service and
is then served according to the distribution b(x). the steady state probabilities Py

= ,_ Lim ooPk (t), where P(t) = P, (K customers in the system at time t), are

given as in (5) by

r{k+1)-1

P, = Z P
J=rk

Where P;j= Lim  _P;(t) and P;(t) =P, (j arrival stages in the system at
time t). The probabilities P;, j = 0,1,2, ... are derived from their z-transform
P(z). The equilibrium equations can be written as

rAPy=up, W
TAPi=TADj +UPju 1<j<r-1 > 4.1
(tA+W)p=rAp.+upjsm r<j. )

operating upon the equations in 4.1 , adding and subtracting the missing terms as
appropriate, yields

Ao AN g8 (£) ase
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0

© r-1 @
Z](u +rA)p;z’ =Y up 2’ =>"rd, 2+ up,, 2’
j= j=1 j=1

J=1

Therefore

@+ [p@)-pol- T up; 21 =rhz Pe) + 2 > p; 2!
e p@=pgl - Zupj2! =1z PO+ b~ 3 pyal

Thus, it is clear that

-1 .
(l—z')fZ:pjzJ
j=0

pz™ —(l+rp)z+1

p(z) =
r

It was explained by Leonard (5) that p(z) can be written as

(1-z")

p(2) = p
k(l-z)(1- =)
Zg

Where k is a constant and Z, is a solution for the equation

rpz™'-(1+rp)z"+1=0.But since p(1) = 1, it follows that

Therefore

(1—z’)[1—-1»~]
L %zl

p(z) = .
r(l-z)(1- ™)
Zy

Operating upon the equations in 4.1 adding and subtracting the missing terms as
appropriate, yields

o :or=1 E e o) . .

Su+rd)p:z) - Tup 2l = 2rAp; 1z’ + Tupjy,z’

=] = N I = | =

Therefore

0+ 1) p@ By~ Tupzi =122 @ +-L 1@ - £p 2]
Fl 2T Fo

FATTCIPUPLL B C YNV Al
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Thus, it is clear that

-1 .
(1-z) 3 pj2’
=0
rpz™! —(1+1p)zf +1

p(z) =

it was explained by Leonard (5) that p(z) can be written as

(1-z)
k(1-2)(1-2)
Zg

p(z) =

where k is a constant and Z, is a solution for the equationrp z*'— (1 +rp) z* +1
=0, such that |z, |>1.

But since p (1) = 1, it follows that

therefore

(l—z’)(l—L]
Zg

P@) = .
r(l-z)(1--)
Zg

Thus,

pa)=(1-2")| L - /%o - 4.2
T

Denoting the inverse z-transform of the quantity ll_/';+_l/rz° by f;. It fo -

1-Z
Zy
lows that the inverse transform for p(z) must be p; = f - £ 4.3
It is clear that
%(1-z0"“) J>0
fy= 4.4
0

AY . AV ,uaS  (E)aue
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Recalling that Zo is a solution for the equation

rpz™—(+rpZ+1=0
It follows that
rp(zo—1)=1—z;r

0
using 4.3 , 4.4, and 4.5 yield

.
1 i
;(l—zo D)

pi=

| plzo-Dz, 7!
Therefore, it is evident that

(1-p) fork=0
Pk =

p(Z5-1)Z* fork>0

4.5

forO<J<r

4.6

forJ>r

4.7

As before, the likelihood function is given by

L(O®)=u™ A .e " p(Z§ —1)Z5%O = (Au)
Therefore, it is evident that

ofnL
ou

L] ﬁ

and

oflnl
04

= -t

6ub A

where i and i are the maximum likelihood estimation for A and u. putting

ofnL _ Ofnl
ou ond |

Oand —=| o5 oyields

Y494 928

(€) sue A




Ayl Sgondi Alns

A‘:”T“ and #=""1 4.9
Therefore,

A=‘r(n +1) 4.10

P T m—1 '

», the maximum likelihood estimator for p, has an F[2 (m-1), 2 (n+1)] distrib -
tion with known variance.

5. POINT ESTIMATION FOR THE ERLANGIAN QUEUE: M/E//1

The interarrival time obeys an exponential distribution with probability density
function, a (t), is given by

a()= re™ fort>0

But, the service time obeys an Erlangian distribution with probability density
function b(x), which is given by

ru(rux)le ™

b(x) = (r-1

x>0

The service facility is an r stages facility. A customer enters the service facility,
passes through exponential stages each with parameter ru, and finishes
service on exiting from the right side of the service facility. No other
customer can be inserted from the left side into the service facility be-
fore the previous one exits from the right hand side of this facility.

The steady state probabilities Py = t—Lim o p, (t), where py (t) = P, (K custom-
ers in the system at time t), k = 1,2,... are given by

rk
P, = i 5.1
Ky P

where Pj= ¢ Lim ., P; (t)and P; (t) = P, (J service stages in the system at time t).
The system state equations are given by

Apo=rup1
(ru+2)P;=Apir+rup j=12,.... [5.2

A AN S (B aus




'i\.a“)ﬁ}f\ s 9ot Al

The method of the z-transform p(z) for the probabilities P; 1s going to be used to
find the steady state probabilities Py ; k = 0.1,.... Multiplying the

jthequation in 5.2 Z and summing over all applicable j yields

O

()‘+ru)[ipj.zj —poJ=kz'ip,_,zj" +%Zz“‘ 53

=0 =l =l

Recalling that pz) = > p;Z’,equation 5.3 reduces to
J=0

po[)»+ru—Lz!=1]—rupl

p(z)= MA+ru-arzf - Il
yielding finally
rupg(l-2)
p(2) =
ru+)»errl - (L+ru)?

where Py is a constant. Recalling that p(1) = 1, it can be easily deduced that py =
1-p. substituting for P; by its value into p (z) yields.

ru(l-p) (1-2)
ru+i errl - (A +ru)?

p@@)=

The denominator of P(z) has (r+1) zeros. 1 is one of its zeros. Thus the denom -
nator of p(z) can be written as (1-z) [ru - A (z+2z2+...+2)], or it can be

rewritten ru(l-—z)(l-zi) ..... (1-22—) , where 1,2, 2, ....... , z; are the (r+1)
1 r ‘

roots of the denominator of p(z). making use of this result, p(z) can be

rewritten as follows:

1_
poy=———— B
(1-a-=9..a-
Zl 22 Zr
Hence,
r A
P@=(1-Pr—7
Fla-=)
Z)
where 54
r 1
A1=I:Il

2]
n#l (1 - —)
Zp

since pj is the coefficient of Z in the expansion of p(z), then

p13a8 19381 (8) aue A.
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(1-p)
55

.
I

Ly -3
(1-pPZA(Z)
=

As before, the likelihood function is given by

r-1
_ A
AT e (1-0) . W0 = (Aw)
u

L(@) =" (r-w™ .M _*
() (r-u e ((r—l)!)m

where W= zr;Al ()7, x= Exl , and both T and 7 and are defined as previously
I=1 1=1

done. Proceeding in the same way as in the previous section, it follows

that

6£_nL‘ ~=£—T+ 1

a 10=0 7 A-d
and

oénL m-1 1

Tl@aéz g i

where i and i are the maximum likelihood estimators for A and u respectively.

Denoting = 1{1 by T*and putting % o5 =0and a%ﬂe‘é =oyield
2o+t =0
A
and 5.6
o rx- pT° =0.
u
Obtaining the value of 1*from each of the equations in 5.6
and dividing the resulting equations, it follows that
m-rxd 5.7
Th—-n

pWAA 59381 (8 aae
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from 5.6 , it follows that

j_p+n(p-1)
T(p-1)

and 58

pg=rm (p-1)-p
rx(p-1)
Dividing the first equation by the second in 5.8 yields
[Tam-1)] p~2 —[Trm+xr(n+1)] p+(rxn) =0 5.9

Replacing rm and n by (rm-1)and (n+1) respectively yields the following ap-
proximated solution:

_xr(n+1)
-~ 5.10

it 1s clear that p has an F[2(rm-1), 2r(n+1)] distribution.

From 5.7 and 5.10, it follows that

n+rm _rm-1

0=— =
Tp+rx rx

and

A . 1
t=pg=ntl
pu T

6. POINT ESTIMATION FOR THE BULK ARRIVAL QUEUE

In the M/E,/1 queueing system, which has been studied in the previous section,
each customer contributes r service stages on his arrival. The arrival of
one customer can be considered as the arrival of r customers. The lat-
ter is an M/M/1 queueing system with “bulk” arrival. Consider that a
random size bulk of probabilities g;, 1=0, 1, 2, ..... is arrive at each ar-
rival instant. As an example, one may think or random size families ar-
riving at the doctor’s office for individual vaccinations. Let A,. and uy
be the arrival rate of bulks and their service rate when there are k cus-
tomers in the system. The z-transform method is used to derive the
probability distributions and the probability density functions.
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Let E, be the k®state of the system. It is evident that the system can reach the
state E; from any lower state and can go out of the state Ey to any
higher state, since the bulk size is random. The net rate at which the

system leaves Ej is A

The steady state probabilities Pj = (Lim_, Lim o, P;j (1), where Pj (t) Pr (J customers in

the system at time t), can be derived from their z-transform P(z). let G
(Z) denote the z-transform of the bulk size, therefore

G@) =5 g 2*
k=1

The system equations are given by

A Po u P] 6.1

(2L+u)pk=upI\.+|+:Z‘_llpJ)Lgk_l fork > 1
Multiplying the . thequation in 6.1 by Z* and recalling that p(z)= ¥ pez* , 1t

k=0
follows that

SRaz+ 5 pge 6.2

e o] k
(A+u)=3 py z
k=] k=1 1=0

N]:

P
—_—

All the series in this equation are convergent, thus the two summation signs in
the second term of the right hand side of 6.2 Can be exchanged.
Therefore, it is evident that

:z:l gp] Agx_, 2! =4 p(z) G(z). 6.3

substituting by 6.3 into6.2 yields

_ upy (1-2)
P@) = (=2 -22(1-G®)

Recalling that P(1) = 1 it is evident that P, = 1 — p, where P is the utilization
factor of our system; in other words P is the average arrival rate of
customers multiplied by the average service time. In this section, the
average arrival rate of customers is the product of the average arrival
rate of bulks and the average bulk size. Thus, it is evident that
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P

It can be easily shown that the distribution of the number of customers in the
system is given by

P =(1-P)TAZ,)" 6.5
1-1
where 4, = 1‘[ lz and Z,, Z,,...., Z, are the roots of the following equation:
n=1(1-"1)
el 2

u(l-z)-rz[l-G(z)]=0

As before, the likelihood function is given by

L(O) = (lﬂl[lG'(l)]e"‘G"')" ] X [f’: uei(l-p)A, (Z,) 1

!
Therefore.

L@)=[\G'() ™ e ()T u e™ |l l(%| Wij

where T= ]Et, , T= Iﬁltl ,and Wj is a constant. It 1s clear that
=] =

oL _m v G'(D)
an A Gt u(l-p)
and
154110 n-1 1
—= -7+ +
a u u-AG (1)

oénL

) r .
Recalling that p =:G (1), letting a IQE@

=v, and denoting 5—(Tl:—13_) by T

it follows that %—G'(l) T-G'()T* =0

And
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Sl e S ‘ 6.6
u

where i, 0, and 2 are the maximum likelihood estimators for A, u and p respec-
tively. Using 6.6 yields

1=_mA-p)-p
G'(HTA-p)

and 6.7

0= n(l_ﬁ)'l'ﬁ.
(1-p)

Finding the value of T*from each equation in 6.6 and dividing the resulting
equations by each other yield

zup-(n-Dp _, 6.8
m-Tup

Recalling that 5= g-'&(l)and using 6.7 yield

(T(n=1) p2 —(Tn+r(m+1) p+m=0 6.9
Replacing (n) and (m+1) by (n-1) and m respectively, it follows that

. Tm
p—m 6.10

is an approximated solution for 6.9.

form 6.8 and 6.10, itis evident that

and

m+(n—l)f7=n—l ’ 6.11
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The following table includes all the results obtained.

The system A a Traffic intensity 7
or utilization factor
p
M/M/1/1 n+y k-y p=L1ty)
T 7 T(k-y)
Single server loss
system
M/M/1/1 n+y m-y _ tln+y)
T g T(m-7)
Self regulating system
M/M/ /1 ”+17:_] m+y-1 A r(n+y+1)
T =—
Tm—-y+1)
Er/M/1 n+l m-1 PRRICED
T r T(m-1)
M/Er/1 n+1 rm-1 b= xr(n+1)
r T(m-1))
Bulk arrival system b n-1 p=tm
TG'(1) T T(n-1)
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